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The paper is devoted to an experimental and numerical investigation of the problem
of excitation of three-dimensional Tollmien–Schlichting (TS) waves in a boundary
layer on an airfoil owing to scattering of an acoustic wave on localized microscopic
surface non-uniformities. The experiments were performed at controlled disturbance
conditions on a symmetric airfoil section at zero angle of attack. In each set of
measurements, the acoustic wave had a fixed frequency fac, in the range of unstable
TS-waves. The three-dimensional surface non-uniformity was positioned close to
the neutral stability point at branch I for the two-dimensional perturbations. To
avoid experimental difficulties in the distinction of the hot-wire signals measured
at the same (acoustic) frequency but having a different physical nature, the surface
roughness was simulated by a quasi-stationary surface non-uniformity (a vibrator)
oscillating with a low frequency fv . This led to the generation of TS-wavetrains at
combination frequencies f1,2 = fac ∓ fv . The spatial behaviour of these wavetrains
has been studied in detail for three different values of the acoustic frequency. The
disturbances were decomposed into normal oblique TS-modes. The initial amplitudes
and phases of these modes (i.e. at the position of the vibrator) were determined
by means of an upstream extrapolation of the experimental data. The shape of the
vibrator oscillations was measured by means of a laser triangulation device and
mapped onto the Fourier space.

The direct numerical simulations (DNS) are based on the vorticity–velocity for-
mulation of the complete Navier–Stokes equations using a uniformly spaced grid
in the streamwise and wall-normal direction and a spectral representation in the
spanwise direction. For the present investigation, the sound wave in the free stream
is prescribed as a solution of the second Stokes’ problem at inflow, and a novel wall
model has been implemented. The three-dimensional simulations were performed for
a stationary surface non-uniformity.

As a result of the present study, the acoustic receptivity coefficients are obtained
both in experiment and DNS as functions of the spanwise wavenumber and acoustic
frequency. The receptivity amplitudes and phases obtained numerically are in very
good agreement with those obtained experimentally in the studied range of para-
meters. The scattering of acoustic waves on three-dimensional surface non-uniformities
is found to be significantly stronger than that on two-dimensional surface non-
uniformities. The obtained data are independent of the specific shape of the surface
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non-uniformity and can be used for estimation of the initial amplitudes of the
three-dimensional TS-waves, as well as for the validation of other three-dimensional
receptivity theories.

1. Introduction
For many years, the problem of boundary-layer transition from the laminar to the

turbulent state has attracted great attention because of its fundamental and practical
importance. This problem includes three main aspects: (i) the receptivity of the
laminar flow to external perturbations, (ii) the linear development of small-amplitude
boundary-layer instabilities, and (iii) the nonlinear flow breakdown to turbulence.

The present paper is devoted to experimental and numerical investigations of the
first of these aspects, namely the linear three-dimensional acoustic receptivity of a
two-dimensional laminar boundary layer in the presence of localized (in streamwise
direction) surface non-uniformities with various spanwise scales.

The receptivity of the boundary-layer flow to external perturbations represents
an important aspect of the laminar–turbulent transition problem, which has both
basic and practical significance. This problem was clearly formulated for the first
time by Morkovin (1968). The receptivity describes mechanisms by means of which
the instability waves are excited in the boundary layers under the influence of some
external (with respect to the boundary-layer flow) perturbations. Starting with the
classic work by Schubauer & Skramstad (1947), various methods of excitation of
the boundary-layer instability modes have been used during the past fifty years
in many experiments devoted to the investigation of linear and nonlinear stability
problems. However, the mechanisms of the generation of instability waves were not
studied until the 1960s. Gaster (1965) was probably the first theoretical work directly
devoted to this problem. It provides a foundation for investigation of boundary-layer
receptivity to localized surface disturbances.

The first detailed quantitative studies of the receptivity problem were performed
in the 1970s. The experiments by Kachanov, Kozlov & Levchenko (1975, 1978) and
Kachanov et al. (1979) were devoted to the study of the excitation of two-dimensional
Tollmien-Schlichting (TS) waves in the vicinity of an elliptic flat-plate leading edge by
means of free-stream vortices, acoustic waves and surface vibrations. The experimental
results were compared by Kachanov et al. (1979) with those obtained by Maksimov
(1979) in his direct numerical simulations. In particular, it was shown that free-stream
vortices could excite the TS-waves effectively when they hit the plate leading edge
(which represented a significant spatial non-uniformity). An important role of the
normal-to-wall component of the velocity fluctuations has been shown. However, far
from the plate nose the same vortices did not excite any remarkable instability waves
because of much weaker streamwise flow non-uniformity. Very similar results were
obtained theoretically by Rogler & Reshotko (1975), Rogler (1977) and Maksimov
(1979).

Kachanov et al. (1975) have also found that an acoustic wave, propagating along
the streamwise axis, does not directly produce any significant TS-waves on the plate
leading edge, but leads to surface vibrations, which excite the instability waves in the
vicinity of the attachment line. Aizin & Polyakov (1979) found in their experimental
and theoretical work that the streamwise acoustic wave produces two-dimensional
TS-waves very effectively during its scattering on a microscopic localized surface non-
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uniformity (a strip of plastic film). The two-dimensional acoustic receptivity problem
was also studied theoretically by Mangur (1977), Tam (1978), Maksimov (1979) (see
also Kachanov et al. 1979), Murdock (1980) and others. The state-of-the-art in the
field at that time was reviewed by Loehrke, Morkovin & Fejer (1975), Reshotko
(1976) and Morkovin (1977). This initial period of direct studies of the receptivity
problem has been summarized by Kachanov, Kozlov & Levchenko (1982) and by
Leehey (1980) and Nishioka & Morkovin (1986).

Later, the receptivity problem was investigated in a large number of theoretical
and experimental studies. From now on, we concentrate mainly on subsequent
investigations of the acoustic receptivity problem.

In the 1980s–1990s, the mechanisms of generation of instability waves in two-
dimensional boundary layers by means of acoustic perturbations in the presence of
a localized (in the streamwise direction) surface non-uniformity, such as a roughness
element, a suction slot, surface vibration and others, were studied in detail for two-
dimensional disturbances. The most important theoretical results obtained in this field
by the mid 1990s are discussed by Zhigulyov & Tumin (1987), Goldstein & Hultgren
(1989), Kerschen (1989), Kerschen, Choudhari & Heinrich (1990), Kozlov & Ryzhov
(1990), Morkovin & Reshotko (1990), Choudhari & Streett (1992), Crouch (1994)
Choudhari (1994) and others. It is necessary to note some important experimental
papers devoted to this problem. After the famous work by Aizin & Polyakov (1979) the
excitation of the two-dimensional instability waves by acoustics on two-dimensional
roughness elements was studied experimentally by Kosorygin, Levchenko & Polyakov
(1985), Kosorygin (1986), Saric, Hoos & Kohama (1990), Wiegel & Wlezien (1993),
Zhou, Liu & Blackwelder (1994), Kosorygin, Radeztsky & Saric (1995) and others.
It was found that the acoustics excite the two-dimensional TS-waves even on a
microscopically small non-uniformity. The receptivity coefficients were estimated in
these studies for different acoustic frequencies, roughness shapes and acoustic wave
inclination angles. A good agreement between theory and experiment was usually
observed.

Choudhari & Kershen (1990) probably obtained the first theoretical results on
the generation of TS-waves by acoustics on a three-dimensional surface roughness
element (or localized three-dimensional suction) for a two-dimensional boundary layer.
A similar problem was investigated theoretically by Tadjfar & Bodonyi (1992) with
the help of non-stationary linearized three-dimensional equations for the asymptotic
triple-deck model of the two-dimensional boundary layer. A qualitative comparison of
these results with previous experiments by Gilyov & Kozlov (1984) and Tadjfar (1990)
was also performed in this paper. The excitation of the TS-waves by acoustics on
three-dimensional roughness elements, such as an oblique surface roughness strip and
a circular roughness, was investigated experimentally by Zhou et al. (1994). Choudhari
& Kerschen (1990) found these results to be in a good qualitative agreement with
theory.

Similarly to two-dimensional boundary layers, the acoustic fields can represent a
possible source for cross-flow (CF) instability waves in swept-wing boundary layers.
As shown by Crouch (1993, 1994), the acoustic receptivity mechanism does exist and
can play a role in the transition process at high enough levels of acoustic excitation.
In these theoretical works, a scattering of the acoustic wave on a stationary localized
surface non-uniformity (roughness) was investigated. This mechanism was found and
investigated experimentally by Ivanov, Kachanov & Koptsev (1998a) on a model of a
swept wing. In addition Ivanov, Kachanov & Koptsev (1997) studied the case of an
unsteady surface non-uniformity, i.e. when it is represented by a localized surface
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vibrator (oscillated with low frequency). In this case, the mechanism of excitation of
the CF instability wave was quasi-stationary. The values of the acoustic receptivity
coefficients were estimated in these experiments, but not compared with theory.

Cullen & Horton (1999) studied the acoustic receptivity for a stationary localized
three-dimensional roughness in a two-dimensional boundary layer, but no quantitative
receptivity coefficients were evaluated. For the first time, these coefficients were
obtained experimentally by Würz et al. (1998) for a single acoustic frequency and
compared with calculations in Würz et al. (1999). The subsequent development of
these studies is discussed in the present paper.

Thus, the present study concentrates, for the first time, on a quantitative investiga-
tion of the three-dimensional boundary-layer acoustic receptivity, including a direct
comparison of values of the experimental and numerical receptivity coefficients.

The three-dimensional acoustic receptivity problem seems to be very important
owing to the following circumstances. It is well known that the transition process in
two-dimensional subsonic boundary layers has an essentially three-dimensional char-
acter (see e.g. Klebanoff, Tidstrom & Sargent 1962). Nevertheless, three-dimensional
instability waves in these flows were of only limited interest to investigators, probably
because of the well-known Squire (1933) theorem, which is usually interpreted to
mean that the two-dimensional TS-waves are the most dangerous from the viewpoint
of transition. However, this interpretation is not quite correct, especially for spatially
growing perturbations and in not strictly parallel flows (see experimental results
by Kachanov & Obolentseva 1996, 1998 and theoretical ones by Bertolotti 1991).
On the other hand, it is well known that in two-dimensional subsonic boundary
layers the three-dimensional waves also play a very significant role at nonlinear
stages of transition, even if their initial amplitudes are small. These three-dimensional
perturbations participate in the resonant interactions with primary waves and become
dominant at certain stages of transition (see e.g. Kachanov & Levchenko 1984; Saric,
Kozlov & Levchenko 1984). The scenarios and the position of transition strongly
depend on the initial amplitudes and phases of these three-dimensional disturbances,
which in turn depend on the three-dimensional receptivity mechanisms.

A significant methodological foundation for the study described in the present
paper was made in a set of previous theoretical and experimental studies. The notions
associated with the localized linear receptivity coefficients for the normal instabil-
ity modes of the frequency–wavenumber spectrum were developed in theoretical
investigations by Gaster (1965), Terent’ev (1981), Zavol’skii, Reutov & Rybushkina
(1983), Ruban (1985), Goldstein (1985), Fyodorov (1988), Choudhari & Kerschen
(1990), Crouch (1992) and others. The methods of experimental determination of
the three-dimensional receptivity coefficients for normal modes were developed by
Gaponenko, Ivanov & Kachanov (1996), Ivanov et al. (1997, 1998a,b), Bake et al.
(2001) and others. (A review of these and other recent studies of the three-dimensional
receptivity problem can be found in Kachanov 2000.)

2. Experimental procedure and definition of receptivity functions
2.1. Wind-tunnel, experimental model and basic-flow characteristics

The experiments were carried out in the Laminar Wind Tunnel (figure 1) of the
‘Institut für Aerodynamik und Gasdynamik (IAG)’ (Wortmann & Althaus 1964).
The Laminar Wind Tunnel is an open return tunnel with a closed test section. The
rectangular test section has a cross-section of 0.73 × 2.73 m2 and a length of 3.15 m.
A two-dimensional airfoil model spans the short distance of the test section. The high
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Figure 1. The Laminar Wind Tunnel of the IAG.
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Figure 2. Sketch of the experimental set-up.

contraction ratio of 100 : 1 and the system of screens and filters result in a very low

turbulence level of less than T u =
√

ū′2/U∞ = 2 × 10−4 for a frequency range of
20–5000 Hz and a flow velocity of 30 m s−1. Above 200 Hz, the measured free-stream
velocity fluctuations are in the range of the electronic noise of standard hot-wire
equipment.

The experimental set-up is shown in figure 2. The receptivity measurements were
performed on an airfoil section ‘XIS40MOD’ (Würz 1995) with 15% thickness, which
was specially designed to have a long instability ramp at zero angle of attack and
different flow regimes can be established by changing this angle. The airfoil was
manufactured from reinforced fibreglass in a numerically controlled milled mould.
Remaining roughness r.m.s. heights of the model surface are in the order of 0.5 µm
measured with a precision surface measuring system.

The free-stream velocity was chosen to be U∞ = 30 m s−1. This results in a Reynolds
number of Re ≈ 1.23 × 106 based on the arclength smax = 0.615 m of the airfoil
measured from the leading edge and the averaged kinematic viscosity ν = 15 ×
10−6 m2 s−1. Taking into account the quadratic influence of the free-stream velocity
on the non-dimensional frequency parameter F = 2πf ν/U 2

δ (where Uδ is the local
free-stream velocity), the velocity was fixed instead of the Reynolds number.

The basic pressure distribution was evaluated from the readings of 48 pressure
orifices, with the boundary-layer traversing mechanism placed at the measurement
position chosen to take its influence into account. The measured values were compared
with distributions calculated from XFOIL (see e.g. Drela & Giles 1986) for a series
of slightly different angles of attack until they gave the best fit to the experimental
data. This distribution (figure 3) was then used for the calculation of boundary-layer
profiles with a finite-difference scheme according to Cebeci & Smith (1974). Because of
the long instability ramp, the shape factor H12 = δ1/δ2 increases nearly linearly from
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Figure 4. Mean velocity profiles for different streamwise positions. Profiles shifted by
�(U/Uδ) = 0.1. Lines are boundary-layer calculation.

the value H12 = 2.58 at s/smax = 0.2 to H12 = 2.71 at the end of the measurement
region at s/smax = 0.33 (δ1 and δ2 are the boundary-layer displacement thickness,
momentum thickness, respectively).

Mean flow velocity profiles were measured at three downstream positions and are
presented in figure 4 (symbols) together with the calculated ones (lines), which fit
quite well to the experimental data. The shape factor H12 = 2.58, measured at the
position of the surface non-uniformity (s/smax = 0.2), is very close to the Blasius
value of H12 = 2.59. Nevertheless, owing to prehistory effects of the boundary layer,
the shape of the profile can show in detail some deviations from the Blasius profile.
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Figure 5. Stability diagram for two-dimensional TS-waves. Position of the vibrator at
0.2 s/smax . The investigated frequencies are marked by dotted lines. (Uδ(s/smax = 0.2) =
36m s−1, ν = 15 × 10−6 m2 s−1.

Despite this fact, stability calculations for the present configuration showed that these
deviations are negligible.

The displacement thickness, δ1ref = 0.36 mm, at the position of the surface non-
uniformity was used to normalize all length scales in this paper, whereas the velocities
(and the amplitudes of its fluctuations) were always normalized by the local free-
stream speed.

2.2. Generation of controlled disturbances

Two kinds of disturbance were produced in the experiments: (i) the acoustic wave
and (ii) the surface non-uniformity. The acoustic wave was generated by a 1020
McCauley loudspeaker located at the wind-tunnel axis about 4.4 m downstream of
the test section and propagated upstream. The sound pressure level was of the order
of 100 dB. Three fixed frequencies were investigated: fac = 720, 1088 and 1562 Hz.
As the local free-stream velocity at the position of the surface non-uniformity was
kept at Uδ = 36 m s−1, these fixed frequencies correspond at this position to the non-
dimensional frequency parameters F × 106 = 52.4, 79.1 and 113.6, respectively. In
the streamwise region of the main measurements, these frequencies lie in the range of
unstable TS-modes, as is seen in figure 5. The stability diagram shown in this figure
(for two-dimensional waves) was calculated with a shooting solver (Conte 1966) for
the solution of the Orr–Sommerfeld equation.

The surface non-uniformity was designed based on the following circumstances.
When studying the three-dimensional acoustic-roughness receptivity, the data analysis
represents a very complicated problem because of difficulties in distinguishing signals
measured at the same (acoustic) frequency but having different physical natures
(i) the instability wave generated by the acoustics (which is relatively weak initially),
(ii) vibrations of the hot-wire probe and the model surface, and (iii) the acoustic field
itself, including the Stokes layer in the near-wall region. These experimental problems
have been solved by Ivanov et al. (1997). A similar method has been applied in the
present investigation. The surface non-uniformity was simulated by a quasi-steady
(low-frequency) localized surface vibrator driven at frequency fv = 1

64
fac. This led to
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the generation of TS-wavetrains at combination frequencies f1,2 = fac ∓ fv , which
corresponded only to the instability waves generated due to a scattering of the
acoustic wave on the quasi-steady roughness. The disturbances at these combination
frequencies, detuned from the frequency of the acoustics (and vibrations), can be
measured relatively easily. The spatial behaviour of these combination modes has
been studied in detail.

The position of the surface vibrator (s/smax = 0.2, Reδ1 = 805) was selected close
to the first branch of the two-dimensional neutral stability curve for the middle
frequency of 1088 Hz (see figure 5). The vibrator had a diameter of d = 6 mm. Its
vinyl membrane, driven by pressure fluctuations produced by a loudspeaker, was
mounted flush with the model surface. To avoid a steady deflection of the membrane,
the static pressure of this pneumatic system was established by a static pressure orifice
positioned on the airfoil surface at the same streamwise station as the vibrator. The
shape of the membrane oscillation was measured in 600 points in the (s, z)-plane
with a Micro-Epsilon LD1605-0.5 laser triangulation device with a specified linearity
below ± 0.2% for a range of ± 0.25 mm.

During the main measurements, the maximum vibrational r.m.s. amplitude Av was
rather low (29.7 µm) in order to be in the linear regime of the receptivity and to
have a linear behaviour of the boundary-layer instability waves (see §§ 4 and 5 for
more details). The equivalent non-dimensional roughness height hr = Av/δ1 = 0.083 is
therefore well below the value of hr = 0.17 for which Saric, Hoos & Radeztsky (1991)
found the first nonlinear response for two-dimensional roughness elements and an
acoustic forcing of 100 dB.

2.3. Procedures of measurements and data acquisition

The main measurements have been performed by a hot-wire anemometer. A modified
DISA 55P15 boundary-layer probe with wire of 1mm in length was used together
with a DISA 55M10 bridge. The calibration of the hot wire was made according to
Kings law and the coefficients were optimized for minimum standard deviation. A
small static pressure probe was used during measurements as a velocity reference at
the boundary-layer edge. The probes were mounted on a traversing system, which
allows computer controlled scans in the wall-normal direction with an accuracy of
5 µm and scans in the spanwise direction with an accuracy of 0.1 mm.

The d.c.-output of the hot-wire anemometer was integrated with a 1 Hz low-pass
filter. The a.c.-output was high-pass filtered with a first-order low-noise filter with
a cutoff frequency of 100 Hz (for fac =1088 Hz and fac = 1562 Hz) and 55 Hz (for
fac = 720 Hz). A programmable amplifier (amplification factor 1 to 3999) was used to
fit the signal always optimally to the input range of the 12 bit AD-converter. Prior
to sampling, the signal was additionally low-pass filtered (fourth-order) at 4400 Hz to
omit aliasing problems. The acoustic and vibrational frequency, as well as the digital
sampling trigger, were generated strictly phase locked by a single quartz-based clock
(figure 2). The ratios between the frequencies were chosen as integer powers of two
(fv : fac : fsample = 1 : 64 : 8), therefore they could be represented with a single Fourier
series coefficient after one fast Fourier transform. After establishment of the sound
field and the TS-wavetrain, five sets of 4096 points were collected and ensemble
averaged in the time domain. The fast Fourier transform analysis was performed and
the Fourier coefficients were corrected in amplitude and phase for the influence of the
filters. All results were monitored on-line.

To account for small possible drifts in the acoustic and vibrational amplitude,
two reference points were defined. The amplitude and phase of the acoustic wave
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Figure 6. Mean velocity profile and calculated TS-eigenfunctions for different propagation
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were measured before and after every spanwise scan by positioning the hot wire at
the s-position of the vibrator, but with 20 mm offset in the spanwise direction and
outside the Stokes layer and the boundary layer. To control the vibrational amplitude
and phase, the hot wire was positioned at a reference point over the vibrator and
just outside the boundary layer; the velocity fluctuations measured at this point are
in phase with the surface vibrations. At the start and the end of every main set of
measurements, the amplitude of the membrane deflection was measured with the laser
triangulation device, which gave a fixed relationship between the velocity fluctuations
and the surface displacement at the frequency of the vibration.

The initial amplitudes of the excited TS-waves, which are necessary for determining
the receptivity coefficients (see § 2.4), cannot be measured directly in the flow because
in the near field of the vibrator a mixture of different other perturbations, such as
continuous-spectrum instability modes and forced (bounded) fluctuations, is present.
Therefore, a main set of the boundary-layer measurements consisted of 8 or 9
spanwise distributions of the TS amplitudes and phases measured downstream of the
surface non-uniformity at chordwise positions si corresponding to the linear stage of
the disturbance development (see figure 3). Then, the spectral amplitudes and phases
were extrapolated back to the position of the centre of the surface non-uniformity
(see § 5 for more details). The first measurement station s1, located approximately
two TS-wavelengths downstream of the vibrator, was found to be outside the near
field. The amplitudes at the combination frequencies f1,2 were corrected according to
the acoustic and vibrational amplitudes measured in the reference points described
above. A similar correction was also applied to the TS-wave phases. The resulting
phases were ‘normalized’ by the acoustic phase, i.e. the acoustic phase was subtracted
from the phases of the TS-waves.

For the spanwise scans, a certain wall-normal distance had to be chosen, which
should be close to the amplitude maxima of normal two-dimensional and three-
dimensional TS-waves in their eigenfunctions. The calculations (figure 6) show that
these maxima do not coincide completely, but a good compromise is given for
y/δ2 = 2.2, especially for fac = 720 Hz and 1088 Hz (see also discussion in § 7.1). This
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position was adjusted during the measurements of spanwise scans by keeping U/Uδ

constant at the necessary corresponding value.
In order to obtain the receptivity phases for the case fv → 0, which would be

interpreted correctly in terms of the acoustic wave scattering on a frozen vibrator (i.e.
on an equivalent roughness), it was necessary to choose correctly the origin of the time
axis. This origin has to be chosen at the time moment when the phase of the membrane
oscillations is equal to zero (for the cosine wave). In this case, we have, at fv = 0, the
vibrator frozen at the position of its maximum positive deviation (i.e. a steady hump)
and the phases of the combination modes at frequencies f1,2 are equal to each other.
When fv → 0 these two modes collapse to one frequency mode with f = fac, the phase
of which is the same as that for the steady roughness. The corresponding shift of the
time-axis origin was made during data processing. Simultaneously, the signal phases
were corrected to take into account the frequency-dependent phase shift of the filters
used for signal conditioning.

2.4. Definition of receptivity functions

In general, the amplitude of the acoustic receptivity coefficient can be defined as
the ratio of complex amplitudes of the initial instability wave amplitude, to those
of the external acoustic perturbation and the involved surface non-uniformity (see
Choudhari & Streett 1992; Crouch 1993; Ivanov et al. 1997). More exactly, all
these complex amplitudes must be determined for every single (normal) mode of the
corresponding frequency–wavenumber spectra.

At the conditions of the present experiment, the acoustic wave has a very large
streamwise wavelength (about 330 mm) compared to the streamwise size of the surface
non-uniformity (6 mm). In this case, the acoustic-wave streamwise wavenumber αac

can be regarded as equal to zero. As the spanwise wavenumber of the two-dimensional
acoustic wave βac is also equal to zero in this study, the acoustic wave itself can be
conceded as just a harmonic in time oscillation of the free stream. The same is true for
the DNS performed for incompressible fluid. Because of this, the acoustic receptivity
coefficients (functions) are defined in the present paper in the following way.

In the experiment, the acoustic-vibration receptivity coefficient is

Ḡav(f1,2, β) = Gav(f1,2, β) exp(iφav(f1,2, β)) :=
B̄inT S(f1,2, β)

Āac(fac)
˜̄Cv(f1,2, α̃r1,2, β)

, (2.1)

where

α̃r1,2 = α̃r (f1,2, β) (2.2)

is the dispersion relationship for the corresponding three-dimensional TS-waves
determined at the streamwise position of the surface vibrator. Here,

B̄inT S(f1,2, β) = BinT S(f1,2, β) exp(iφinT S(f1,2, β)) (2.3)

is the initial (i.e. at the centre of the vibrator) complex spectrum of the excited
TS-waves,

Āac = Aac exp(iϕac) (2.4)

is the complex amplitude of the acoustic wave over the centre of the vibrator, and

˜̄Cv(f1,2, α̃r1,2, β) = C̃v(f1,2, α̃r1,2, β) exp(iλ̃v(f1,2, α̃r1,2, β)) (2.5)

is the two-dimensional complex resonant spectrum of the shape of vibrations. All
functions and variables with an overbar are complex, whereas those without a bar
are real. BinT S , Aac and C̃v are the corresponding real amplitudes and φinT S , ϕac and
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λ̃v are the corresponding real phases. A tilde designates the resonant parts of the two-
dimensional spectrum of the surface non-uniformity, i.e. those spectral components,
which correspond to the dispersion relationship (2.2). Note that the two-dimensional
spectrum of vibrations

C̄v(αr, β) = Cv(αr, β) exp(iλv(αr, β)), (2.6)

is independent of the frequency (of vibrations) as it was found experimentally (see
§ 2.2), whereas the resonant spectrum of vibrations, (2.5), depends on the frequency
of the excited TS-wave.

The DNS are performed for the interaction of a sound wave with steady roughness.
In this case, f1 = f2 = fac and the definition (2.1) is reduced to

Ḡar (fac, β) = Gar (fac, β) exp(iφar (fac, β)) :=
B̄inT S(fac, β)

Āac(fac)
˜̄Cr (fac, α̃rac, β)

, (2.7)

where α̃rac = α̃r (fac, β) is the dispersion relationship for the corresponding three-

dimensional TS-wave excited at the acoustic frequency and ˜̄Cr is the complex resonant
spectrum of the roughness shape.

Definitions (2.1) and (2.7) correspond to each other when the vibrational frequency
is infinitely small. This is true (in a physical sense) for the present experimental
conditions. Indeed, there are three time scales, which characterize the problem: (i) the
acoustic-wave period Tac = 1/fac ≈ 1 ms, (ii) the vibrational period Tv = 1/fv ≈ 60 ms,
and (iii) the period of the passing of the basic flow over the vibrator (with diameter
d = 6 mm) Tb = d/Ue ≈ 0.17 ms. It is seen that, for the present experimental
conditions, Tac � Tv and Tb � Tv . This means that the vibrator remains ‘frozen’ (it
represents, in fact, a roughness element) during one period of the acoustic oscillation
and during the passing of the flow over it. Therefore, in the present case, the acoustic-
vibration receptivity function Ḡav(f1,2, β) determined experimentally is equivalent
to the acoustic-roughness receptivity function Ḡar (fac, β) and in the final diagrams
(figure 18 a, b, c) the subscript ar is used also for the experimental values.

All functions occurring on the right-hand sides of expressions (2.1) and (2.7),
i.e. functions (2.3), (2.4) and (2.5), have to be found during the investigation for
determining the receptivity coefficients. For determination of the resonant spectrum
(2.5), the dispersion function (2.2) and the two-dimensional spectrum of vibration
(2.6) also have to be found.

Further steps for the experimental evaluation of the receptivity functions are
described in § 4. The results presented there are given for the case fac = 1088 Hz (if
not stated otherwise). However, the final receptivity functions are given in § 7.1 for all
three examined frequencies.

3. Numerical simulation approach
Direct numerical simulations were performed for the same test case, especially

for the same boundary-layer conditions at the position of the vibrator. Because the
experiment was performed on an airfoil, upstream and downstream of the rough-
ness/vibrator the parameters in the simulation deviated from those in the experiment.
Nevertheless, because of the localized character of the problem studied, this approach
is adequate.

The DNS are based on the vorticity–velocity formulation of the complete Navier–
Stokes equations using a uniformly spaced grid, fourth-order-accurate finite differences
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Figure 7. Sketch of the integration domain used in the direct numerical simulations.

in the streamwise and wall-normal direction and a spectral representation in the
spanwise direction (see Rist & Fasel 1995). In contrast to Rist & Fasel (1995) a
‘total variable formulation’ is used instead of a ‘disturbance variable formulation’.
The computational domain is shown in figure 7.

For the present investigations, the sound wave in the free stream is prescribed
at inflow as a solution of the second Stokes’ problem for a given frequency and
amplitude. For the modelling of the surface roughness, a novel wall model has been
implemented and compared with standard first-order formulations that consider only
a no-slip condition in wall-parallel directions. The use of a body-fitted coordinate
system is avoided and the typically small surface roughness is modelled by non-zero
velocity at the lowest row of grid points, which are extrapolated from the field in such
a way as to fulfil the no-slip condition on the surface of the roughness. Here, this
is done using fifth-order polynomials, which are consistent with the finite-difference
representation of the flow field. The main difference between the new model and
models found in literature is that it takes into account the no-slip condition for the
wall-normal velocity on the roughness as well. Thus, at least for larger heights of
the surface roughness, this novel formulation should lead to more accurate results,
because there is no linearization in it.

The calculation of the complex receptivity function for the interaction of a sound
wave of a given frequency with a roughness with a discrete spanwise wavenumber
and a certain shape in the streamwise direction requires four numerical simulations
(see Wörner et al. 2000). In the first simulation, the steady flow over a flat plate with
a roughness located at a certain distance from the leading edge is calculated using
the unsteady Navier–Stokes equations starting with the flow over a flat plate without
roughness. In the second simulation, the interaction of the sound wave with the
roughness is calculated using the previously calculated steady flow over the roughness
as the initial condition.

The difficulty now is to extract the TS-wave, which is created by the interaction of
the sound wave with the roughness, from the total solution. There are two problems.
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Figure 8. Downstream amplitude development of the two-dimensional TS-wave generated at
the roughness in comparison to linear stability theory, zero pressure gradient, position of the
roughness at x = 2.471, F = 79.1 × 10−6.

The first is that the sound wave itself has the same frequency as the created TS-wave
and the second is that there is a numerically created TS-wave at the inflow boundary
resulting from an inflow boundary condition that is not absolutely correct. This
problem is solved using a method suggested by Crouch & Spalart (1995). Therefore,
a third simulation is required including the sound wave, but no roughness. In this
simulation, the TS-wave created at the inflow boundary is also present. So the TS-
wave created at the roughness can be extracted from the total solution by subtracting
the results of the third simulation from the results of the second. Then, a Fourier
analysis is used to determine the amplitude and phase of the TS-wave at every
streamwise position.

In a two-dimensional simulation, a single TS-wave can be observed downstream
of the surface roughness. Figure 8 shows the amplitude development of the created
disturbance versus the non-dimensional streamwise coordinate x, whereas figure 9
depicts the u-velocity disturbance profile versus y at a location downstream of the
surface non-uniformity. The amplification rates, as well as the shape of the u′(y)-
profile, agree well with those predicted by linear stability theory.

Because of the influence of the near field (see figure 8), the calculated amplitude of
the TS-wave at the centre of the roughness element must be extrapolated from the
downstream behaviour (similar to the experimental case). This is done by matching
the amplitudes of the TS-wave created owing to receptivity at the roughness with the
amplitudes of a TS-wave calculated in a fourth simulation by pure blowing and suction
at the wall upstream of the roughness element. The behaviour of both TS-waves
must be similar downstream of the roughness. So the results of the fourth simulation
can be used for the extrapolation.

To check the validity of the code for two-dimensional receptivity simulations, test
calculations were performed varying the frequency of the sound wave and the location
of the surface non-uniformity relative to the leading edge. The results were compared
with results obtained by Choudhari & Streett (1992) with ‘finite-Reynolds-number-
theory’ including a first-order model of the roughness. Choudhari & Streett introduced
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the so-called ‘efficiency function’ Λu that is proportional to the receptivity func-
tion (2.7).

For small enough roughness, the DNS with the novel high-order wall model should
lead to the same results as the linearized theory by Choudhari & Streett (1992).
Figure 10 shows a comparison of the ‘efficiency function’ for the Blasius boundary
layer with results of the DNS calculations. The problem was studied for three different
Reynolds numbers (based on δ1) and as a function of the acoustic frequency. As can
be seen, the results agree very well.

The main calculations were performed for the same three acoustic frequencies as
in the experiments and for three discrete spanwise wavenumbers, which correspond



Three-dimensional acoustic-roughness receptivity 149

0.010

0.005u′TS1, 2

0 10
y/δ2

5

π

0

–π

Amplitude

Phase

Config. I

Config. II

Config. III

Figure 11. Measured normal to wall profiles at the position s/smax = 0.325. Config. I:
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ac = 0.00249m s−1, Av = 33mm; config. III:

u′
ac = 0.00535m s−1, Av = 16 mm. The fluctuation amplitude u′

T S1,2 is normalized by the
acoustic and vibrational r.m.s. amplitude and the local free-stream velocity Uδ .

to the TS-wave propagation angles of 0◦, 25◦ and 45◦. All other parameters were
chosen so that the situation in the DNS represents that in the experiment.

4. Preliminary measurements
This paper focuses on the linear receptivity problem. A criterion for the linearity

of the present problem is an independence of the spatial distributions of phases and
normalized amplitudes from absolute values of vibrational and acoustic amplitudes. In
figure 11, the normal-to-wall profiles of streamwise velocity fluctuations are compared
with each other for three different levels of excitation, which cover the whole range of
the studied parameters. The fluctuation amplitude u′

T S1,2 is normalized by the acoustic
and vibrational r.m.s. amplitude. All three measurements agree well. In addition the
hot-wire signal was checked carefully for the appearance of secondary combination
frequencies f = fac ± 2fv , the presence of which would indicate the nonlinearity of
the receptivity mechanism. To provide the linear development in the wavetrain, which
is necessary for the applied method for upstream extrapolation, the acoustic and
vibrational forcing was limited so that the maximum r.m.s TS-amplitude at the end
of the measurement section was of the order of u′/Uδ = 0.02% for the combination
frequencies.

During preliminary measurements, it turned out that the acoustic wave excites the
membrane of the vibrator at the acoustic frequency. This also leads to very weak
membrane oscillations at the combination frequencies f1,2 = fac ∓fv (probably owing
to a weak nonlinearity of the vibrator). These vibrations produce, in turn, TS-waves
resulting from the receptivity due to the vibrations themselves. It was found that
the possible additional amplitude of the TS-waves excited because of the vibrational
receptivity is at least 19 times lower than the amplitude of the TS-waves produced
because of the acoustic receptivity.
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Figure 12. (a) Downstream development of amplitudes for the ‘first’ combination mode fT S1 =
1071 Hz. (b) Downstream development of phases for the ‘first’ combination mode
fT S1 = 1071 Hz.

The quality of the installation of the vibrator with respect to the model surface
influences the measurement’s signal-to-noise ratio because of additional perturbations
entering the boundary layer. These perturbations appear, in particular, due to a
scattering of acoustic waves on the edges of the vibrator, which may not be
mounted perfectly flush with the wall. This influence was estimated by measuring
the transition position, which turned out to be almost at the same streamwise station
as for the ‘clean’ airfoil, including cases when the acoustics or the vibration were
switched on.

The orientation of the acoustic wave can be significant for values of the acoustic
receptivity coefficients (see Choudhari & Kerschen 1990; Zhou et al. 1994). In the
experimental situation the high-frequency acoustic wave produced by the loudspeaker
inside the wind-tunnel reflected many times from different walls and acoustical non-
uniformities. As a result, the acoustic field can have a rather complicated spatial
structure, which includes standing waves. Therefore, the angle of inclination of the
velocity fluctuation vector with respect to the mean flow was measured with a single
slanted hot wire in the (s, z)-plane above the vibrator. This angle was found to be
very small, typically below 10◦.

5. Downstream evolution of excited TS-waves and their initial spectra
The results of the main hot-wire measurements are illustrated in this section. Prior to

the spatial Fourier transform, the measured spanwise distributions were interpolated
to an equally spaced grid. The resulting spatial fields of the TS-wave amplitude and
phase measured within the wavetrain for the ‘first’ combination mode f1 = fac − fv

(fac = 1088 Hz) are shown in figures 12(a) and 12(b). Similar fields were obtained for
another (‘second’) combination mode f2 = fac + fv , as well as for two other acoustic
frequencies studied (fac = 720 and 1562 Hz).

The complex values corresponding to the wavetrain in physical space were mapped
for each spanwise scan to the spanwise wavenumber spectra by means of the spatial
complex Fourier transform

B̄T S(si, β) =
1

2π

∫ ∞

−∞
ĀT S(si, z)e

−iβz dz.
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Figure 13. Downstream development of amplitudes for three different spanwise
wavenumbers in comparison to linear stability theory (lines).

Then, the downstream development of the normal (i.e. harmonic in time and space)
oblique waves with different fixed values of the spanwise wavenumber was investigated
separately at each fixed combination frequency.

For the determination of the receptivity function (2.1), it was necessary to evaluate
the initial complex spectra (amplitudes and phases) of the excited TS-waves, (2.3),
at the position of the surface non-uniformity. In previous receptivity experiments,
different methods have been used to ‘reconstruct’ the initial wavenumber spectra
of the TS-waves. Ivanov et al. (1997) performed an upstream extrapolation of the
data by curve fits. Another possibility is to determine these stability characteristics
experimentally with a second source placed upstream of the main vibrator (Bake
et al. 2001). In the present paper, the results from linear stability calculations were
used for the extrapolation of the data.

The streamwise development of the normal-mode amplitudes is illustrated in
figure 13 for the first combination frequency f1 (at fac = 1088 Hz) for three different
values of the spanwise wavenumber. The wavenumbers shown in figure 13 (βδ1 =
0 ± 0.096 and ±0.192) correspond to the propagation angles of 0◦, ±26◦ and ±46◦,
respectively. The lines denote the amplification curves predicted by the locally
parallel linear stability theory, whereas the points correspond to the experimental
data. The values obtained at the position of the vibrator centre (s/smax = 0.2),
with the help of the theoretical amplification curves matched with the experimental
points, correspond to the extrapolated initial spectral amplitudes. These values were
determined for every fixed spanwise wavenumber β . It can be seen from figure 13 that
for high angles (greater than approximately 40◦) the locally parallel linear stability
theory underestimates the TS-wave increments owing to non-parallel effects (see e.g.
Bertolotti 1991; Kachanov, Koptsev & Smorodsky 2000), which are not included in
it. In view of this, in order to minimize the extrapolation error, the matching of the
theoretical and experimental distributions for high propagation angles was performed
only at the beginning of the region of measurements.

The downstream development of the associated phases of the normal TS-modes
is shown in figure 14. It can be seen that every set of points is very well fitted by
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Figure 14. Downstream development of phases corresponding to three different spanwise
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Figure 15. - - -, Downstream development of amplitudes in the wavenumber–amplitude
plane. The extrapolated initial spectrum at the position of the vibrator.

a straight line, which was used for the extrapolation of the phases to the vibrator
centre position. The gradient of each streamwise phase distribution corresponds to
the dimensional streamwise wavenumber αr of the excited TS-wave.

The measured and extrapolated (initial) amplitude parts of the TS-wave spanwise-
wavenumber spectra are shown in figure 15 for the first combination frequency f1 (at
fac = 1088 Hz).

6. Resonant spectra of vibrations
Figure 16 shows the dispersion characteristic for the position of the source for two

combination frequencies at fac = 1088 Hz. Two kinds of dispersion characteristics are
shown in this figure: (i) the streamwise wavenumber versus the spanwise wavenumber
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Figure 16. Comparison of extrapolated measured (symbols) and calculated (LST, lines)
dispersion characteristic at the position of the vibrator.

and (ii) the wave propagation angle versus the spanwise wavenumber. Symbols
correspond to the experimental data obtained from the streamwise phase distributions
such as those presented in figure 14. The solid lines show for comparison the
corresponding dispersion characteristics calculated directly from locally parallel linear
stability theory for the same streamwise position. The agreement is remarkably good.
Similar results have been obtained for the two other frequencies studied.

The dispersion curves (2.2), like those shown in figure 16, were used for selection of
the resonant modes (2.5) in the two-dimensional wavenumber spectrum (2.6) of the
shape of the membrane oscillations described above. Only the resonant combination
modes discussed in § 2.4 can produce TS-waves in the boundary layer.

The shape of the membrane oscillations was carefully measured (see § 2.2) and
then double Fourier transformed in the streamwise (s-coordinate) and spanwise (z-
coordinate) directions. The amplitude part of the resulting two-dimensional wave-
number spectrum is shown in figure 17. It is nearly axisymmetric and independent of
both the disturbance frequency and amplitude. The spectral phases (not shown) are
practically constant in the region of the main cupola of the amplitude spectrum.

From this spectrum, the components of the resonant spectrum (2.5) were selected
(line in figure 17) by means of linear interpolation along the line in the (αrδ1, βδ1)-
plane, which corresponds to the dispersion function (2.2) (see figure 16). The solid line
in figure 17 shows the range of spanwise wavenumbers used during the experimental
data processing. This resonant spectrum was used for determination of the receptivity
function according to (2.1). (Note that for the very low vibrational frequency used
in the present experiment, the resonant spectra for the first and second combination
modes merge practically with each other in figure 17.)

7. Receptivity coefficients and their comparison with previous results
7.1. Receptivity functions in the present experiment and DNS

Finally, the values of the amplitude and phase parts of the complex receptivity
functions were obtained according to definitions (2.1) and (2.7) for the experiment
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wavenumbers.

and DNS, respectively. By means of the dispersion characteristics θ1,2 = θ1,2(β) =
tan−1(β/α̃r1,2) obtained for every fixed TS-wave frequency (see figure 16), it is
convenient to present the receptivity functions in dependence of the TS-wave propa-
gation angle θ . The results are shown in figures 18(a)–18(c) for fac = 720, 1088
and 1562 Hz, respectively. In the experiment, the receptivity functions are obtained
for two combination frequencies in the range of wave propagation angles from −50◦

to +50◦.
First of all, figure 18 shows that the amplitude and phase parts of the complex

receptivity function, calculated with DNS (large symbols), show very good agreement
with those obtained in the experiment. The deviations do not exceed the experimental
accuracy estimated from the scattering of the experimental points in different sets of
measurements.

As was mentioned in § 2.3, the values for the receptivity functions presented in
figure 18 (for both the experiment and DNS) are obtained for a non-dimensional
wall distance y/δ2 = 2.2. For fac = 720 Hz and fac = 1088 Hz, this distance coincides
quite well with the position of the maximum amplitude for the TS-eigenfunctions
for the studied propagation angles. However, for fac = 1562 Hz, the position of the
maximum for the two-dimensional eigenfunction is slightly closer to the wall and,
therefore, below the selected y-distance. This leads to somewhat lower values of the
receptivity amplitudes for propagation angles |θ | � 10◦.

To clarify this point, figure 19 shows the receptivity amplitudes calculated in DNS
for the y-distance used in the measurements (solid lines, black symbols) and for
the distances, which correspond to exact (calculated) positions of the TS-amplitude
maxima (dashed lines, open symbols). It can be seen that for the two-dimensional-wave
(θ = 0◦) at fac = 1562 Hz, the receptivity amplitude determined for the experimental
distances is about 10% lower than that for the exact maximum position. Because
of this, the values of the receptivity amplitude measured for zero propagation angle
(figure 18) increase first with frequency and then decay for fac = 1562 Hz. However, if
we take the influence of the two-dimensional maximum offset into account (figure 19),
the two-dimensional receptivity turns out to rise slightly with frequency.
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Figure 18. (a) fac = 720Hz, (b) fac = 1088Hz and (c) fac = 1562Hz. The amplitude and
phase part of the receptivity function for fac , solid symbols mark the first, hollow symbols the
second combination frequency. Large symbols show results from DNS.

It is seen from figure 18 that, for all studied frequencies, the receptivity is lowest for
the two-dimensional case and increases with increasing wave-propagation angle. For
fac = 720 Hz, this increase is relatively small and reaches a 1.5 times higher value
for a 50◦ propagation angle in comparison with the two-dimensional wave. For the
frequency fac = 1562 Hz, the receptivity for θ = 50◦ is a factor of 2.5 higher in
comparison with zero propagation angle. This observation is especially important
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for transition in two-dimensional subsonic boundary layers (see § 1). For practically
relevant cases, the two-dimensional TS-waves usually reach higher amplitudes, com-
pared to the three-dimensional ones, in the linear stage of the transition development
because of the selective stability characteristics of the boundary layer. However, the
rather strong angular dependence of the acoustic-roughness receptivity mechanism
found in the present study is able to produce a significantly higher initial level of
three-dimensional disturbances, which can have an essential influence when entering
the nonlinear stage of transition (see e.g. Klebanoff et al. 1962; Herbert 1988).

The phase part of the receptivity function is only weakly dependent on the TS-
wave propagation angle and frequency, both in experiment and DNS. For the two-
dimensional case, the receptivity phase is close to −90◦ and increases slightly to
approximately −45◦ for propagation angles of θ = 50◦.

7.2. Comparison with related receptivity experiments

A quantitative comparison with published experimental data can be done for the
zero propagation angle only. Saric et al. (1991) performed experiments in a Blasius
flow for scattering of a plane acoustic wave with non-dimensional frequency of
F =50 × 10−6 on the roughness positioned at Reδ1 = 1248. The results are given as
u′

T S/u
′
ac (a kind of receptivity coefficient for fixed roughness shape and height) at

the measurement position. In order to compare these values with the receptivity
coefficients found in the present work, it is necessary to make some assump-
tions and to perform additional calculations. The initial (i.e. at the roughness
location) amplitude u′

inT S of the excited TS-wave can be estimated with the help
of an upstream extrapolation by means of linear stability theory. The amplitude of the
resonant spectral component C̃r = C̃r (α̃r ) of the streamwise-wavenumber spectrum
of the roughness element Cr = Cr (αr ) must be determined for the value of the
streamwise wavenumber α̃r , for zero propagation angle. Finally, the coefficient u′

T S/u
′
ac
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measured by Saric et al. (1991) must be multiplied by u′
inT S/u

′
T S and divided by C̃r (α̃r ).

After these transformations, the coefficient can be used directly for comparison. The
resulting receptivity coefficient turned out to be Gar = 0.165, that is somewhat higher
than Gar = 0.134, obtained in the present work for a non-dimensional frequency of
F = 52.4 × 10−6 and a local Reynolds number of Reδ1 = 805. To compare finally
the receptivity coefficients for equal conditions, the influence of the Reynolds number
and frequency parameter was estimated with the help of the theoretical results by
Choudhari & Streett (1992) (cf. figure 10). Applied to the receptivity coefficient of
Saric et al. (1991), this leads to Gar = 0.124, which is now fairly close to the present
value.

A similar comparison can be performed with experiments by Kosorygin et al. (1995).
In this case, the non-dimensional frequency had a value of F = 32.7 × 10−6 and the
rectangular roughness was positioned at Reδ1 = 1509. The receptivity coefficient was
defined in that paper as Ks = u′

T S,I

/
u′

ac,I , where u′
T S,I , u′

ac,I are the r.m.s. amplitudes
of the two-dimensional TS-wave and the acoustic wave, respectively, determined at
the position of the first branch of the neutral stability curve (which coincides with the
position of the roughness). It was found that Ks = 0.031. After normalization with
C̃r (α̃r ) (see above) this gives a receptivity coefficient for the experiments by Kosorygin
et al. (1995) of Gar = 0.212. Taking again the influence of Reynolds number and
frequency parameter into account, which requires an interpolation over a wider range
than for the experiment of Saric et al. (1991), this value reduces to Gar = 0.161 for
the present conditions and becomes rather close to (somewhat higher than) the value
of Gar = 0.134 reported here.

The results obtained in the present study on three-dimensional acoustic-roughness
receptivity can also be compared qualitatively with the vibrational receptivity problem,
which was studied by Ivanov et al. (1998b) and Bake et al. (2001) for the Blasius
boundary layer. In the case of acoustic receptivity, the TS-wave is excited owing to
scattering of the large-wavelength acoustic wave on a short-scale, localized surface
roughness. Meanwhile, in the case of vibrational receptivity the TS-wave is excited
directly by the surface vibrations, which contain spatial scales of the order of the
TS-wavelength. One of the non-dimensional frequencies (F × 10−6 = 81.4) examined
by Ivanov et al. (1998b) is close to one of those studied in the present experiment
(F × 10−6 = 79.1); the local Reynolds number (Reδ1 = 739) at the position of the
source is also similar (Reδ1 = 805). In addition, a complete Fourier decomposition
was performed in that work and the receptivity functions were evaluated as the ratio
of the complex initial wavenumber spectrum of excited TS-waves and the resonant
complex spectrum of the surface vibrations. Owing to the absence of acoustic forcing,
this definition of the receptivity function is, of course, different from (2.1). However,
it is possible to compare the receptivity functions obtained in these two cases if
we multiply the acoustic-roughness coefficients by a fixed amplitude of the acoustic
forcing. This reduces (2.1) to the same definition as was used in the study of vibrational
receptivity. By introducing a level of 116.2 dB (u′

ac = 0.032 m s−1) for the acous-
tics, the receptivity amplitudes become approximately the same (for a propaga-
tion angle of 35◦) as those for the vibrational receptivity (figure 20). For higher
levels of the acoustic amplitude, the acoustic-roughness receptivity generates higher
initial TS-waves, for the same equivalent roughness height, than the vibrational
receptivity mechanism. The receptivity phases were processed in a similar way
by adding a constant offset (�φ = 204◦) to fit both curves for 35◦ propagation
angle.
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Figure 20. —, Comparison of acoustic-roughness receptivity to - - -, vibrational receptivity. To
match the curves for 35◦ propagation angle the acoustic-roughness coefficients are multiplied
with a fixed acoustic amplitude of 116.2 dB and the corresponding phases are shifted by an
offset of 204◦.

Figure 20 shows the results for the frequency parameter investigated. It is apparent
that the same angular dependence is found for both receptivity mechanisms, for
the amplitudes as well as for the phases. The small difference in the amplitude
part for propagation angles less than 20◦ can be explained by the slightly different
wall distances used in both experiments for the measurement of the TS-wavetrains.
The consistency of the angular dependence of the receptivity coefficients for the
present case, the three-dimensional acoustic-roughness receptivity, and the three-
dimensional vibrational receptivity studied by Ivanov et al. (1998b) gives reason to
the assumption that the two mechanisms have a substantial similarity in their physical
natures.

8. Conclusions
The results of the present study can be summarized briefly in the following way.

The linear three-dimensional acoustic receptivity due to localized quasi-stationary
surface non-uniformities has been studied experimentally and numerically for three
different acoustic frequencies in a range, which corresponds to the most ampli-
fied TS-waves. The quantitative measurements were performed in a laminar two-
dimensional subsonic boundary layer of a symmetric airfoil section at zero angle of
attack.

In the experiment, the surface non-uniformity was modelled by a circular membrane
vibrating at a very low frequency compared to the acoustic one. Under the conditions
of a strictly phase-locked measurement, this made it possible to separate the TS-wave
in the hot-wire signal from the acoustic wave and associated vibrations by means of
Fourier analysis (similar to experiments by Ivanov et al. 1997). In the DNS, the surface
non-uniformity was steady. The streamwise position of the surface non-uniformity
was chosen close to the first branch of the neutral stability curve (for two-dimensional
perturbations). In the experiment, the boundary-layer profile at this point was very
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close to the Blasius one. Therefore, the accompanying DNS have been performed
for the Blasius flow. The DNS are based on the vorticity–velocity formulation of the
complete Navier–Stokes equations using a uniformly spaced grid in the streamwise
and wall-normal direction and a spectral representation in the spanwise direction.
The sound wave in the free stream was prescribed as a solution of the second Stokes’
problem at inflow. A novel wall model was implemented in the DNS, which avoids
the use of a body-fitted coordinate system and linearization.

A complete complex Fourier decomposition of the involved TS-disturbances and
the shape of the surface non-uniformity was performed to map the data from
physical space onto the corresponding Fourier space (frequency–wavenumber). The
development of the normal Fourier mode amplitudes in the TS-wavetrain showed a
good agreement to the locally parallel linear stability theory. This stability theory
was used in the experiment for the upstream extrapolation of the normal TS-
mode amplitudes from the region of the hot-wire measurements to the surface
non-uniformity. The resonant spectral modes were selected from the two-dimensional
wavenumber spectrum of the measured shape of the surface non-uniformity along
the dispersion curve. Those values were used (together with the involved acoustic
amplitudes and phases) to determine the acoustic-roughness receptivity coefficients as
functions of the TS-wave frequency and propagation angle.

The comparison of the experimental receptivity amplitudes and phases with those
obtained in the accompanying DNS has shown a very good agreement in the range
of parameters studied. Taking into account that the quantitative determination of the
receptivity function represents very extensive data processing, which includes the data
approximations and extrapolations, the present combined experimental and DNS
study is the most reliable way to ensure high-quality results.

One of the main results is that the acoustic-roughness receptivity mechanism
generates three-dimensional waves much more effectively (up to 2.5 times in the
range of parameters studied) than two-dimensional ones. The acoustic-roughness
receptivity amplitudes are found to increase with acoustic wave frequency for all
propagation angles. The most significant frequency dependence is observed again
for three-dimensional modes inclined at large angles to the flow direction. The
predominance of the three-dimensional acoustic-roughness receptivity mechanism is
of importance for practically relevant cases, because the three-dimensional TS-waves
play a very significant role at nonlinear stages of transition (see e.g. Klebanoff
et al. 1962; Herbert 1988).

In contrast to the receptivity amplitudes, the corresponding phases depend only
weakly on the frequency and spanwise wavenumber.

The results obtained in the present paper for the acoustic-roughness receptivity
exhibit features which are very similar to those observed for pure vibrational
receptivity (Ivanov et al. 1998b), mainly a significant angular dependence of the
receptivity amplitudes and a rather weak change in the corresponding phases.

As previous experimental results were obtained solely for the two-dimensional case,
a quantitative comparison of the three-dimensional acoustic-roughness receptivity
characteristics studied in the present work can only be performed for the particular
case of zero spanwise wavenumber. A good overall consistency is found with
measurements by Saric et al. (1991) and Kosorygin et al. (1995).

Owing to the complete Fourier decomposition of all perturbations in the present
work, the determined receptivity functions are independent of the specific physical
shape of the surface non-uniformity and the results can be used directly for validation
of linear receptivity theories.
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Grenzschichten und Ablöseblasen sowie Vergleich mit der linearen Stabilitätstheorie und
empirischen Umschlagskriterien. Dissertation, Institut für Aero- und Gasdynamik der
Universität Stuttgart.

Würz, W., Herr, S., Wagner, S. & Kachanov, Y. S. 1998 Experimental investigations on three-
dimensional acoustic receptivity of a laminar boundary layer in the presence of surface
non-uniformities. 11. DGLR/AG-STAB Fach-Symposium, Berlin, 10–12.11.1998. In New
Results in Numerical and Experimental Fluid Mechanics (ed. W. Nitsche, H. J. Heinemann &
H. Hilbig) NNFM, vol. 72, Vielweg, Wiesbaden.

Würz, W., Herr, S., Wörner, A., Rist, U., Wagner, S. & Kachanov, Y. S. 1999 Study of three-
dimensional wall roughness acoustic receptivity on an airfoil. In Laminar–Turbulent Transition
(ed. H. Fasel & W. Saric), IUTAM Symposium, Sedona, AZ, USA, 91–96.



Three-dimensional acoustic-roughness receptivity 163

Zavol’skii, N. A., Reutov, V. P. & Rybushkina, G. V. 1983 Generation of Tollmien–Schlichting
waves via scattering of acoustic and vortex perturbations in boundary layer on a wavy surface.
J. Appl. Mech. Tech. Phys. 24, 355–361.

Zhigulyov, V. N. & Tumin, A. M. 1987 Origin of Turbulence. Nauka, Novosibirsk (in Russian).

Zhou, M. D., Liu, D. P. & Blackwelder, R. F. 1994 An experimental study of receptivity of
acoustic waves in laminar boundary layers. Exps. Fluids 17, 1–9.


